r円川I GOSSEN
 Müller \& Weigert

DIGEM 96 x 48 AK5

for the following measurements:

- DC ammeter / DC voltmeter
- Input transducer 4 ... $20 \mathrm{~mA} / 0$... 20 mA
- DC shunts
- Current transformer .../1 A; .../5 A
- AC voltmeter 100 or 700 V
- Thermal resistances Pt100
- Thermocouples
- Frequency

Suitable functions are indicated on the nameplate of each meter.

1 Ambient conditions

Working temperature $0 \ldots 50^{\circ} \mathrm{C}$
Self temperature - 20 ... $70^{\circ} \mathrm{C}$

Application class
Climatic test
KWG as per DIN 40050
type tests as per IEC 68 parts 2 and 3; 96 h
Vibration resistance

2 Code compliance

Design	as per EN 61010-1.01
Safety class	1
Enclosure code	
Case	IP 40 as per DIN 40050
Terminals	IP 00 as per DIN 40050
Overvoltage category	II
Soilage classification	1 interior
	2 exterior
EMC	EN 61000-4-
RFI suppression	EN 61000-3-

3 Installation

First insert meter in front panel cutout without the slider fasteners. Then locate slider fasteners in the bevel rivets on the sidewalls and clamp meter to front panel using the screw spindles. These meters are suitable for panel mounting as well as in rack/mosaic arrangements after having inserted the fastener for the corresponding rack mounting system in the bevel rivets so that the complete unit can then be shoved into the rack.

4 Dimensional drawing

 Front panel cutout: $45^{+0.6} \times 92^{+0.8} \mathrm{~mm}$

5 Connections

Caution!

Display hold and segmenttest (connections 9, 10,11) are connected electrically with the signal input. External circuit elements have to be insulated corresp. to the signal input GND.

for DC and AC ranges, 2-wire input transducers, current transformers, DC shunts and frequency

for thermal resistances Pt100

for thermocouples

6 Opening the rear side of the meter

Caution!
Opening meters, changing the auxiliary supply voltage and selecting the decimal point is only allowed when the power supply is "off" and the signal is "on".

7 Changing the aux. supply voltages from $230 \mathrm{~V} \sim$ to $115 \mathrm{~V} \sim$
Turn the coding plug located behind the transformer. The set voltage range can be read off from the plug (not as for version 24 V DC).

8 Selection the decimal point

Before selecting it is necessary to detach the bezel, the front panel and the display.
Selecting the decimal point is done by means of the coding plug on the front panel of the meter.

9 Calibration of the signal

Caution!

During calibration certain components are autom. dangerously live. It is therefore mandatory that calibration is carried out by suitably qualified personnel only. Use an insulated screwdriver for potentiometer calibration.

Definition of input span (SPAN RANGE) and zero shift (ZERO RANGE)
The input span corresponds to the total display capability from LO to HI, the setting ignoring any decimal point.

Example:

A meter having an input range of $4 \ldots 20 \mathrm{~mA}$ and a display range of $-30.0 \ldots 190.0$ has an input span to the value of $2200=[-(-300)+.1999]$.
Zero shift corresponds to the number of digits by which LO is shifted.
In the above example zero shift is -300 .
9.1 Calibration for meters with connection to input transucers 4 ... $20 \mathrm{~mA} / 0$... 20 mA
9.2 Calibrations for meters with DC ranges and DC shunts or AC ranges

Option:

Calibration

Two separate potentiometers and two coding plugs are provided for calibrating the input span and meter zero. Calibration is done in the following sequence:

Input span:

- Insert zero position coding plug in the center position (CAL); this places the zero potentiometer out of circuit
- Insert the two coding plugs for the input span in the corresponding range
- Apply the input span signal (HI-LO) to the signal input
- Using the HI pot. set the display of the input simplified calibration for 4 ... 20 mA
- Apply 4 mA to the signal input
- With the HI potentiometer set the value corresponding to $1 / 4$ of the signal input Example:
Signal input $=2200$
Value to be set $=550$

Zero calibration:

- Insert zero position coding plug in location corresponding to the required display (negative values $=$ NEGATIV, positive values $=$ POSITIV, zero values $=$ MID RANGE)

Option:

- Insert the coding plug in the corresponding range (from 60 mV shunts to 50 mV , from 150 mV shunts to 100 mV and from 300 mV shunts to 200 mV)
- If the meter has the offset option, calibrate the display to „000" using the zero potentiometer
- Apply a signal to the input corresponding to 95% of full scale (HI)
- Calibrate to the precise value using the HI potentiometer

9.3 Calibration for meters with connection to current transformer or frequency

 Same calibration as for meters with AC ranges without the presetting by coding plugs.
9.4 Calibration for temperature measurement

 These meters are calibrated exactly by the factories.Therefore the calibration on location is not necessary.

- Connect resistance for $0{ }^{\circ} \mathrm{C}(100.0 \Omega)$ to the signal input and set the display to $0^{\circ} \mathrm{C}$ by means of the potentiometer
- Connect resistance for $190^{\circ} \mathrm{C}=172.16 \Omega$ (resp. for $600{ }^{\circ} \mathrm{C}=313.59 \Omega$) to the signal input and set the display to $190^{\circ} \mathrm{C}$ (resp. to $600^{\circ} \mathrm{C}$) by means of the HI potentiometer

Protective conductor connection must be connected to ground!

10 Specifications

Display

Type
Hue
Numeral height
Count
Decimal points
Display range
Overflow
Polarity

7 segments LED
red, optional green
approx. 14 mm

- 1999 ... 1999

Front panel adjustable

- 1999 ... 1999

1 ... if signal value >1999
,."" indicated automatically

Input
dep. on version (see nameplate) for DC/AC ranges:
Voltage drop as per
DC mA or AC mA max. 1.6 V
Input resistance

as DCV	$\geq 1 \mathrm{M} \Omega$
as ACV	$\geq 2 \mathrm{M} \Omega$
Overload as per DCV	10 imes, max. 250 V
for AC V	10times, max. 250 V

for 700 V max. 1.2 times (protective impedance)
for DC V
SMRR
for DC shunts
Input resistance
Overload max. 2 V
for current transformers
$\begin{array}{ll}\text { Overload } & \begin{array}{l}\text { 60times for } 1 \mathrm{~s} \\ \text { 2times permanently }\end{array}\end{array}$
for Pt100
Current by sensor 1 mA
for frequency
Input voltage
Measuring range
Calibration

Control commands
Display hold
Segment test

$$
80 \ldots 700 \mathrm{~V}
$$

12 ... 199.9 Hz
12 ... 500 Hz
Meters are precalibrated to a standard value

Printed in Germany • Subject to change without notice
GOSSEN Müller \& Weigert
Kleinreuther Weg 88
D-90408 Nürnberg, Germany
Phone +49 911 3502-0
Fax +49 911 3502-307/305
http://www.g-mw.de • e-mail: info@g-mw.de

Accuracy
after exact calibration $\quad \pm(0.05 \%+2$ digits $)$
Additional error
AC ranges $\quad \pm(0.2 \%+3$ digit $)$
for 50 ... 60 Hz
DC part ± 0.2 \%
Temperature ranges $\pm(0.3 \%+1$ digit)
Wire influence for
Pt100 3-wire
Temperature drift
$<2.8^{\circ} \mathrm{C} / \Delta \Omega$
$<190 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero drift
(only for devices
with shift zero point) $\quad<0.2$ digits/ $/{ }^{\circ} \mathrm{C}$
Warmup
approx. 1 minute
Auxiliary supply voltage
... standard
$230 \mathrm{~V} / 50 \ldots 60 \mathrm{~Hz}$
convertible to 115 VAC
$-15 \% \ldots+10 \%$
Option $24 \mathrm{VDC} / \mathrm{AC} \quad 18 \ldots 36 \mathrm{~V}$ DC/24 V AC
(see nameplate) $-15 \% \ldots+10 \%$
Power consumption max. 3.5 W
A/D converter
System Dual slope
Integration time approx. 100 ms
Sampling rate typ. 3 per sec.
$\begin{array}{ll}\text { Case } \\ \text { Style } & \text { Split metal shell }\end{array}$
Bezel 96×48; black, dull
(gray/light optional)
5 mm
max. 125 mm
approx. 0.4 kg
DIN screw clip;
rack mount optional
Faston $2.8 \times 0.8 \mathrm{~mm}$; screw
terminal blocks optional
Test voltages
$U_{H} \quad 230 / 115 \mathrm{~V} \quad 24 \mathrm{~V}$
Supply-input signal
2.3 kV 0.5 kV

Supply-case
1.35 kV 0.5 kV

Input signal-case
3.25 kV 3.25 kV

